
Formalising Domain Theory with Lean

Anna Williams

1 Introduction

One of the key motivations for domain theory, as established in the seminal paper by Dana
Scott [Sco70], is that of unrestricted functions. These are functions to which we wish to apply
any argument, including the function itself. This is inconsistent with set theory. For example,
take a function f : A → B, then if we want to consistently apply f to itself, notice that f must
belong to the set A too. However A ̸= (A → B) for any values of A and B.

Domain theory is now a rich field with major applications in computer science, particularly
in the theory of programming languages.

1.1 Why Formalisation?

To look at arguments for formalisation of mathematics, we examine the contexts of existing
and new proofs.

Existing Proofs

• We can back up existing proofs.

• For longer and harder to understand proofs, it is easier to accept a formalised proof
in which you only have to trust the proof assistant, than it is to understand and
accept the proof as a whole. Though this may mean you don’t understand the proof
as well, it allows you focus on the key ideas instead.

New Proofs

• We can create new proofs that are more trustworthy or are completely new. For
example, the proof of the four colour theorem by Georges Gonthier is more well
accepted than previous less precise computer proofs using software which had no in
built checks for correctness.

• It makes writing new proofs with larger numbers of participants easier as all proofs
are checked by the proof assistant as opposed to having to be checked by other
participants. This could help make mathematics more accessible to less experienced
mathematicians.

1.2 Aims and Goals

The main aim of this project was to explore the possibilities of formalisation of domains us-
ing Lean, with some intent to contribute to the mathlib4 library to expand some of the key
definitions and work in this area.

1



2 Domain Theory

Dana Scott motivates a lot of the key ideas behind Domain Theory well, so we will follow the
reasoning he gives in his initial paper [Sco70]. We focus in particular on the “data types” that
we base computations on and explore how these are structured.

2.1 Data Types

When talking about functions, or computations, we want to talk about the underlying set, or
data type, we are operating with. First exploring the structure of a data type, notice that for
any two elements of our underlying set, there might exist a relation between them; call this
⊑. This could be a sort of estimation – for example a finite sequence can “estimate” infinite
sequence by being correct to n digits, a lower bound can estimate a target value, etc. Recall
that a relation is defined as follows.

Definition 2.1. A relation on a set A, is a subset R ⊆ A× A. To denote that (a, b) ∈ R, we
write aR b.

So then, what properties does this relation have? Naturally we would want any item to
estimate itself (reflexivity), if we have a chain of estimations, then we should have that the
start of the chain estimates the end (transitivity), and finally if two elements estimate one
another then they must be equal (anti-symmetry). This leads us to our first key definition.

Definition 2.2 (Partially Ordered Set). A partially ordered set, or poset for short, consists of
an underlying set D and relation on the set, given by ⊑, such that

i) ∀x ∈ D, x ⊑ x,

ii) ∀x, y, z ∈ D, where x ⊑ y and y ⊑ z, then x ⊑ z, and

iii) ∀x, y ∈ D, where x ⊑ y and y ⊑ x, then x = y.

Note. Notice that i) is exactly reflexivity, ii) is transitivity and iii) is anti-symmetry.

Throughout this section, we will use the natural numbers with infinity, N∞ = N∪{∞}, and
the relation ≤ as an example to try to support in the understanding of definitions.

Example 1. N∞ with ≤ is a poset.

Now that we have a relation, consider the following sequence:

x1 ⊑ x2 ⊑ . . . ⊑ xi ⊑ xi+1 ⊑ . . .

Then we might say that the xn are tending towards a limit. Say that the limit is x, then we
write

⊔
xn = x. We first look at sets which have least upper bounds for finite subsets. These

are called directed sets, as they have a “direction” which they go in.

Definition 2.3. A directed set is a non-empty set, A, such that for all pairs x, y ∈ A there is
a least upper bound z such that x ⊑ z and y ⊑ z.

Notation. We write A ⊆dir D to mean that A is a directed subset of D.

Example 2. Continuing our example with N∞, we can prove that every subset is a directed
set.

2



Proof. We need to show that for any given nonempty subset A ⊆ N∞ for all x, y ∈ A, there
is some z ∈ A such that x ≤ z and y ≤ z. Notice that max(x, y), defined in the usual way
satisfies this property. First see that max(x, y) ∈ A as max(x, y) = x or max(x, y) = y. Then
notice that x ≤ max(x, y) and y ≤ max(x, y) as required.

Now expanding to include least upper bounds for infinite sets, we find the definition for a dcpo.

Definition 2.4 (Directed Complete Partial Order). A directed complete partial order, or dcpo
for short, is a poset such that every directed set has a least upper bound.

Example 3. Continuing with our example of N∞, we need to show that every directed set (so
every set) has a least upper bound.

Proof. We split into two cases: where the set is finite and where the set is infinite. In the case
that the set is finite, we simply take the maximum element of the set. In the case the set is
infinite, there is no upper bound within the natural numbers and so the least upper bound is
∞.

We now define approximation, a new relation based upon the existing one which “gives
some room” between elements.

Definition 2.5. We say that x approximates y, and write x ≪ y, if for all A ⊆dir D such that
y ⊑

⊔
A, then there exists a ∈ A such that x ⊑ a.

Example 4. Looking at N∞, we can see that x ≪ y if x ≤ y, except that ∞ ̸≪ ∞.

Proof. Let x, y ∈ N∞ and assume that x ≤ y. We now split into two cases, where y = ∞ and
where y ̸= ∞.

Let A ⊆ N∞, with y ≤
⊔

A. If A is finite, then we simply pick the maximum element
a =

⊔
A ≤ y and x ≤ y ≤ a, so x ≤ a. If A is infinite, then there must be some element a ∈ A

which is larger than y and as x ≤ y ≤ a, x ≤ a.

This finally leads us onto our definition for a continuous domain.

Definition 2.6 (Continuous Domain). A continuous domain is a dcpo such that the set ↓↓x :=
{a | a ≪ x} is directed and such that

⊔
↓↓x = x.

That is every element can be reconstructed via its constituent parts (those that approximate
it) [ES99].

Example 5. We now prove that N∞ is a continuous domain.

Proof. Directed by the fact that every set is directed. If x ̸= ∞, then x ≪ x, so the set
↓↓x = {a|a ≤ x}, thus the least upper bound is x. If x = ∞, then ↓↓∞ = N and thus the least
upper bound is ∞.

2.2 The Interval Domain

One interesting domain is the interval domain because it gives the real numbers a computational
structure as per [ES99]. It is the collection of closed intervals on the real numbers, with a least
element (the real numbers).

I = {[a, b] | a, b ∈ R and a ≤ b} ∪ {R}

We order these by the superset relation, that is R ⊑ A for all A ∈ I and [a, b] ⊑ [c, d] if
a ≤ c and d ≤ b. We can demonstrate this domain visually using a triangle, where the widest

3



ranges are towards the bottom and the top line consists of single element ranges, such as [2, 2].
We place the element [a, b] in the triangle, such that a line drawn parallel to the left edge of
the triangle intersects [a, a] at the top line and a line drawn parallel the right of the triangle
intersects [b, b] at the top line.

R

[a, b]

[a, a] [b, b]

Figure 1: The interval domain, with element [a, b] labelled.

3 Lean

Let’s take a look at the tool we are working with to formalise the definitions and examples
given in the previous section. There are few different steps involved with formalisation, namely
stating definitions, stating theorems and proving theorems.

3.1 Stating Theorems

We first look at stating theorems, which is the simplest of the three and allows us to get
familiar with the notation. To get started, we will look some of the important symbols we use
to formalise statements.

Lean symbol Natural language
→ Implies
∧ And
∨ Or
∃ Exists
∀ For all

Now to show how we use these, we will state an example theorem statement we might want
to formalise and the corresponding Lean statement.

Theorem 3.1. For all n,m ∈ N, such that n ≤ m there exists p ∈ N such that n+ p = m.

theorem lessThanImpliesDiff : ∀ n m : N, n ≤ m → ∃ p : N, n + p = m

We can split this statement up into chunks to see what each section does.

Code In plain text
theorem lessThanImpliesDiff : . . . State a new theorem called “lessThanImpliesDiff”

∀ n m : N, . . . for all n,m ∈ N, . . .
n ≤ m → . . . n ≤ m implies that . . .

∃ p : N, n + p = m there exists p ∈ N, such that n+ p = m

4



3.2 Stating Definitions

Stating definitions is a little more complex. We mainly use the following methods:

• An inductive data type,

• a structure, which restricts existing data types, and

• a new definition which builds upon existing definitions.

For an example of an inductive data type, we define the two item set. When using this
method, we give it a name and list the ways of constructing an element of it. In this case, an
element is either bot (⊥), or top (⊤), this gives us the following definition.

inductive TwoSet where

| bot

| top

For an example using a structure, suppose we want to define the even numbers, then this
is exactly given by the natural numbers which satisfy the rule divisible by two. So we base our
structure off of a natural number n and restrict it such that we only have the n which can be
represented by 2 times another natural number z. This gives us the following definition.

structure Even (n : Nat) where

divByTwo : ∃ z : Nat, n = 2 * z

For our last method, we define a predicate. This takes an element of a type and returns a
True or False value. We use it a lot to represent the idea of subsets, where an element is in
a subset if the predicate applied to that element returns True and not if it returns False. We
define the predicate on a type X as the type of all functions from the given type X to Prop.

def Pred (X : Type) : Type :=

X → Prop

3.3 Proving Results

Now comes for the hard bit: proving the results we state.

3.3.1 Goals and hypotheses

When we are writing a proof, we are given a goal, the thing we are aiming to prove, and a set
of hypotheses, which we can use in our attempt to prove the goal. For example, we have the
following theorem and context, where Prop is the type whose elements are either True or False.

theorem orRight : ∀ (a : Prop), a ∨ True := . . .

⊢ ∀ (a : Prop), a ∨ True

On the left of the turnstile (⊢), are the hypotheses, of which we currently have none. On
the right of the turnstile is the current goal, which at present is the statement of our theorem.
How do we move on from here?

5



3.3.2 Tactics

Lean has this interesting feature called “tactics”, which takes a step towards natural language
proof and thus helps to make proving theorems simpler and more clear. Each line (or step) of
a proof we use a different keyword to describe what we want to do at that point.

Tactic What the tactic does
intro takes assumptions and makes them a hypothesis
apply takes a ‘hypothesis’ and applies it to the goal
simp attempts to simplify hypothesis/goal
have allows sub proof for new hypothesis
exact states that the goal is exactly the given thing
match allows case by case analysis for inductive types

We start with the keyword “by” which allows us to use tactics. Then we want to work with
some specific value of a, to do this we use intro. This gives us the following.

theorem orRight : ∀ (a : Prop), a ∨ True := by

intro a

. . .

a : Prop

⊢ a ∨ True

Notice now have a slightly different goal: intro has taken a from being in the for all section
and instead made it a hypothesis. Our goal is now to prove a ∨ True. Here comes the slightly
tricky part - we have to use some of Lean’s built in functions to prove our goal. What we need
to say here is that we can prove that the goal is always true because the right hand proposition
of the or is always true.

theorem orRight : ∀ (a : Prop), a ∨ True := by

intro a

apply Or.inr

a : Prop

⊢ True

Our goal is now to prove True and we can just use the introduction rule for True.

theorem orRight : ∀ (a : Prop), a ∨ True := by

intro a

apply Or.inr

exact True.intro

We now have no context because we have achieved our goal and therefore finished the proof.

4 Formalising Domain Theory

We will now go through some of the Lean code I have written, so that you can get more familiar
with the language and look through the rest of the codebase independently. First we define a
relation. Recall that a relation on X is a subset of the set X ×X and that we model a subset
using a predicate. Therefore we can define a relation as a function which takes two arguments
and returns a prop as follows.

def Relation (X : Type) : Type :=

X → X → Prop

6



Now that we have relations defined, we can define a poset, where D is the underlying set and
rel is the relation on this set. We take these two and check that they follow the three required
rules as given in Definition 2.2.

structure Poset (D : Type) (rel : Relation D) where

reflexive : ∀ x : D, rel x x

transitive : ∀ x y z : D, rel x y → rel y z → rel x z

antisymmetric : ∀ x y : D, rel x y → rel y x → x = y

Now let’s look at an example: the two item set from earlier. First, we define the relation on
the set as follows:

def TSRel : Relation TwoSet

| ⊤, ⊥ => False

| _, _ => True

We split the cases of the two argument into either (⊤,⊥) or some other pair. The underscore
here acts as a wildcard and means that any value is accepted. This therefore says that the
relation ⊤ ⊑ ⊥ does not hold, but every other relation does hold.

We can now prove that this indeed forms a poset. At the first step, we make a poset. Lean
then creates three different context to prove the three different axioms: reflexivity, transitivity
and antisymmetry. We then prove that each of these cases holds individually.

theorem TSPoset : Poset TwoSet TSRel := by

apply Poset.mk

.case reflexive

=> intro x

match x with

| ⊥ => simp [TSRel] -- have ⊥ ⊑ ⊥
| ⊤ => simp [TSRel] -- have ⊤ ⊑ ⊤

.case transitive

=> intro x y z lxy lyz

match x, y with

| ⊥, _ => simp [TSRel]

| ⊤, ⊥ => simp [TSRel] at lxy

| ⊤, ⊤ => exact lyz

.case antisymmetric

=> intro x y lxy lyx

match x, y with

| ⊥, ⊥ => exact rfl

| ⊤, ⊤ => exact rfl

| ⊤, ⊥ => simp [TSRel] at lxy -- we derive False

| ⊥, ⊤ => simp [TSRel] at lyx -- we derive False

See the whole codebase at [Wil].

5 Conclusions and Further Work

I have formalised all definitions given in Section 2 and have attempted to formalise the three
examples given: namely the two item set, N∞ and the interval domain. I have proven that
the two item set is a poset and a continuous domain, but proving it was a dcpo required some

7



classical axioms – the law of excluded middle. This is not a problem, but I think it would
be nice to prove this constructively – that is, without classical axioms. I hit a similar barrier
when proving that N∞ was a dcpo and it turns out that both of these are impossible to prove
constructively, at least in the current way they are defined [Jon23]. I also proved that the
interval domain was a poset, but decided to leave the dcpo and continuous domain proof as I
thought these would be held back at similar points.

For further work, I would like to read more about constructive proofs of the two item set
being a dcpo and the natural numbers with infinity also being a dcpo . I would also like to
work up to harder definitions and proofs so that I can contribute to the mathlib library, both
in terms of reading more about domain theory and in terms of getting more familiar with Lean.

References

[AJ95] Samson Abramsky and Achim Jung. “Domain Theory”. In: Handbook of logic in
computer science (Oct. 1995). doi: 10.1093/oso/9780198537625.003.0001.

[ES99] Abbas Edalat and Philipp Sünderhauf. “A domain-theoretic approach to com-
putability on the real line”. In: Theoretical Computer Science 210.1 (1999). Real
Numbers and Computers, pp. 73–98. issn: 0304-3975. doi: https://doi.org/
10.1016/S0304-3975(98)00097-8. url: https://www.sciencedirect.com/
science/article/pii/S0304397598000978.

[Gie+12] Gerhard Gierz et al. A Compendium of Continuous Lattices. Jan. 2012. isbn:
9783642676802. doi: 10.1007/978-3-642-67678-9.

[Gou13] Jean Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory: Selected Top-
ics in Point-Set Topology. New Mathematical Monographs. Cambridge University
Press, 2013.

[Jon23] Tom De Jong. Domain Theory in Constructive and Predicative Univalent Founda-
tions. Jan. 2023. doi: 10.48550/arXiv.2301.12405.

[Sco70] Dana Scott. OUTLINE OF A MATHEMATICAL THEORY OF COMPUTATION.
Tech. rep. PRG02. OUCL, Nov. 1970, p. 30.

[Wil] Anna Williams. https://codeberg.org/awsloth/LeanDomainTheory.

8

https://doi.org/10.1093/oso/9780198537625.003.0001
https://doi.org/https://doi.org/10.1016/S0304-3975(98)00097-8
https://doi.org/https://doi.org/10.1016/S0304-3975(98)00097-8
https://www.sciencedirect.com/science/article/pii/S0304397598000978
https://www.sciencedirect.com/science/article/pii/S0304397598000978
https://doi.org/10.1007/978-3-642-67678-9
https://doi.org/10.48550/arXiv.2301.12405
https://codeberg.org/awsloth/LeanDomainTheory

	Introduction
	Why Formalisation?
	Aims and Goals

	Domain Theory
	Data Types
	The Interval Domain

	Lean
	Stating Theorems
	Stating Definitions
	Proving Results
	Goals and hypotheses
	Tactics


	Formalising Domain Theory
	Conclusions and Further Work

